Numerical Solution of Fully Implicit Energy Conserving Primitive Equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of fully nonlinear elliptic equations by Böhmer's method

We present an implementation of Böhmer’s finite element method for fully nonlinear elliptic partial differential equations on convex polygonal domains, based on a modified Argyris element and BernsteinBézier techniques. Our numerical experiments for several test problems, involving the classical Monge-Ampère equation and an unconditionally elliptic equation, confirm the convergence and error bo...

متن کامل

Numerical solution of implicit neutral

This paper is concerned with the numerical solution of implicit neutral functional diierential equations. Based on the continuous Runge{Kutta method (for ordinary diierential equations) and the collocation method (for functional equations), two general one-step methods are formulated and their uniform order of approximation are discussed. Numerical stability of a class of Runge{Kutta-Collocatio...

متن کامل

A Potential Enstrophy and Energy Conserving Numerical Scheme for Solution of the Shallow-Water Equations on a Geodesic Grid

Using the shallow water equations, a numerical framework on a spherical geodesic grid that conserves domainintegrated mass, potential vorticity, potential enstrophy, and total energy is developed. The numerical scheme is equally applicable to hexagonal grids on a plane and to spherical geodesic grids. This new numerical scheme is compared to its predecessor and it is shown that the new scheme d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Meteorological Society of Japan. Ser. II

سال: 1975

ISSN: 0026-1165,2186-9057

DOI: 10.2151/jmsj1965.53.3_222